Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(3): e0012022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484041

RESUMO

Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/genética , Aedes/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Fiji/epidemiologia , Vanuatu
2.
PLoS Negl Trop Dis ; 17(11): e0011642, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032856

RESUMO

BACKGROUND: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and has been shown to reduce the transmission of dengue and other Aedes-borne viruses. Here we report the entomological results from phased, large-scale releases of Wolbachia infected Ae. aegypti mosquitoes throughout three contiguous cities located in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: Local wMel Wolbachia-infected Ae. aegypti mosquitoes were generated and then released in an initial release pilot area in 2015-2016, which resulted in the establishment of Wolbachia in the local mosquito populations. Subsequent large-scale releases, mainly involving vehicle-based releases of adult mosquitoes along publicly accessible roads and streets, were undertaken across 29 comunas throughout Bello, Medellín and Itagüí Colombia between 2017-2022. In 9 comunas these were supplemented by egg releases that were undertaken by staff or community members. By the most recent monitoring, Wolbachia was found to be stable and established at consistent levels in local mosquito populations (>60% prevalence) in the majority (67%) of areas. CONCLUSION: These results, from the largest contiguous releases of wMel Wolbachia mosquitoes to date, highlight the operational feasibility of implementing the method in large urban settings. Based on results from previous studies, we expect that Wolbachia establishment will be sustained long term. Ongoing monitoring will confirm Wolbachia persistence in local mosquito populations and track its establishment in the remaining areas.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Cidades , Colômbia , Meio Ambiente , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...